
1.
2.

3.

Online script generator Documentation
General overview
First steps
Using OSG
Additional information
Queues and maximum runtime
Document history

This is a guide for the usage of the online script generator (OSG) utility. With this web-based tool you can learn how to create a
script to launch your applications in a cluster using different schedulers

General overview

Open your internet browser and go to: http://scriptgen.scicore.unibas.ch
You will see the Dashboard. Click in . Generate

OSG can handle different schedulers. If the following page appears, choose the scheduler that you want to use for your
submission scripts. Otherwise, depending on the installation by your system administrator, it might automatically jump
to the scheduler that is relevant for the current system (point 4 below). In sciCORE/UniBas SGE and Slurm are used,
while in Vital-IT/SIB the scheduler is LSF.

Disclaimer
This is a learning tool that efficiently bridges the know-how gap that is present among many new users when starting
to work with distributed computing facilities. Therefore, it is not meant to be used as a production tool.

http://scriptgen.scicore.unibas.ch

3.

4. This is the main page of OSG. You will use this form to generate scripts that can be copy-pasted to create working
scripts. We will cover the details of each field below. Once the form is filled up with the information that you need, click
in and the script will appear in the big text field Generate Generated Script. In the following we use the SGE scheduler
as an example to explain the fields. These might vary from one scheduler to another, but the main concept behind is
the same.

First steps

Starting to use OSG is very simple. You just need to click . This will create a script with default values: Generate

#!/bin/bash
#$ -N myrun
#$ -pe smp 1
#$ -l membycore=1G
Total memory reserved: 1GB
#$ -l runtime=06:00:00
#$ -o $HOME/myrun.o$JOB_ID
#$ -e $HOME/myrun.e$JOB_ID
#$ -cwd

#load your required modules below
############################

#export your required environment variables below
###

#add your command lines below
##########################

As you can see, the generator gave default values to several fields that were not filled up: name (myrun), number of cores (1),
reserved memory per core (1GB), runtime (6h), and standard output and standard error location files (in you home directory
with names myrun.o$JOB_ID and myrun.e$JOB_ID). It also tells you where you should add the commands to load required
modules (for example compilers, libraries, third-party software, etc...), to export environment variables, and to add your actual
command lines (precisely what you want to calculate in the cluster).

Nevertheless, it is very likely that you need to reserve different resources depending on the tasks that you want to perform. To
do that, you have to fill the form up.

Using OSG

Field Default Description Command example Tips

Name your
run

myrun This is simply the name that your task will receive when showed up in
the queue. The name is limited to 20 characters. No spaces are allowed.

#$ -N Use a name
that helps
you to
recognize
what is
actually the
task about

Do you want
to join
STDOUT and
STDERR?

No STDOUT and STDERR stand for Standard Output and Standard Error.
These are two files in which the system will write down any output that
your task would have generated in the screen if it was launched
interactively. STDOUT stores all output related to the task running
command and STDERR stores all error messages emitted by the system
during the time your task is running and related to it. If you choose No
, two independent files will be created. If you choose , the STDERR Yes
and STDOUT output will be stored jointly with the STDOUT file. No
spaces are allowed.

#$ -j y Use
environment
variables to
define the
path of these
files (f.e.
$HOME)
instead of
writing static
paths. In this
way, your
script may
still work if
the name of
the paths
(f.e. your
home path)
change.

Select
number of
cores

1 This reserves a number of cores to do your calculation. The default
parallel environment is SMP, meaning that all calculations are
performed in the same node. Therefore, 64 cores is the maximum
value. For massive parallel calculations using MPI, please contact us.

#$ -pe smp

Select RAM
memory/core

1 GB Reserve this amount of memory . If you reserve more than 1per core
core the total reserved memory is multiplied! You can see the total
reserved memory in the next field, as a reminder of the amount that is
being requested by your script.

#$ -l membycore=1G

Use debug
queue?

No The debug queue is a very short queue that is meant for development
and debugging of your scripts. Therefore, only testing runs should be
submitted here.

#$ -q debug.q

Send
notification
of run end
via email?

No If you choose , a new field will appear for you to input your email. Yes
Then the scheduler will send you an email after your job has finished or
aborted.

#$ -m ea -M <email> Use this
option with
caution. If
you launch
thousands of
jobs you
won't like to
receive
thousands of
emails!

Execute job
from current
working
directory?

Yes If you choose , a new field will appear for you to input the path No
where the scheduler can find the executable of your command lines. No
blank spaces are allowed.

#$ -cwd

Select
runtime

6h Here you input the estimated time that your task require. The time that
you specify here will select the queue in which your task will run. You
can find the runtime limits in a table in the OSG page and .here below

#$ -l runtime=06:00:00 It is
important to
be as
accurate as
possible in
this, so that
the scheduler
can
efficiently
back-filing
the available
resources. As
a
consequence,
your tasks
will be
executed
sooner.

Number of
tasks (array
of jobs)

1 Array jobs is an efficient way of submitting many independent tasks to
the scheduler with one single script. The number here determines the
amount of tasks to be done.

#$ -t 1-100 OSG
assumes that
the array of
jobs always
starts on 1,
but this can
be changed
directly in
the script.

Number of
simultaneous
jobs

1 If you launched an array of many jobs, it is advisable to group them in
batches, so that you always have a reasonable number of tasks
running. The number specified here determines the amount of
maximum simultaneously running tasks of your array of jobs.
Obviously, it cannot be bigger than the total amount of tasks.

#$ -tc 10

Additional information

Reset button will clear the form but not any script previously generated.
Clear button will clear the previously generated script.
Save button will save the previously generated script in the computer.local

Queues and maximum runtime

Queue Name Max. Runtime Limits

debuq.q 30 min 8 cores/user

very_short.q 30 min No limit

short.q 6.5 h No limit

long.q 25 h 500 cores/user

very_long.q 1 week (168 h) 300 cores/user

infinite.q ∞ 64 cores/user

Document history

Date Author Comment

28-jun-2016 Rubén Cabezón Changed name from Blackarrow to OSG.

13-abr-2016 Rubén Cabezón Original Document

	Online script generator Documentation

